Multivariate Curve Resolution for Hyperspectral Image Analysis: Applications to Microarray Technology*
نویسندگان
چکیده
Multivariate curve resolution (MCR) using constrained alternating least squares algorithms represents a powerful analysis capability for the quantitative analysis of hyperspectral image data. We will demonstrate the application of MCR using data from a new hyperspectral fluorescence imaging microarray scanner for monitoring gene expression in cells from thousands of genes on the array. The new scanner collects the entire fluorescence spectrum from each pixel of the scanned microarray. Application of MCR with nonnegativity and equality constraints reveals several sources of undesired fluorescence that emit in the same wavelength range as the reporter fluorophores. MCR analysis of the hyperspectral images confirms that one of the sources of fluorescence is due to contaminant fluorescence under the printed DNA spots that is spot localized. Thus, traditional background subtraction methods used with data collected from the current commercial microarray scanners will lead to errors in determining the relative expression of lowexpressed genes. With the new scanner and MCR analysis, we generate relative concentration maps of the background, impurity, and fluorescent labels over the entire image. Since the concentration maps of the fluorescent labels are relatively unaffected by the presence of background and impurity emissions, the accuracy and useful dynamic range of the gene expression data are both greatly improved over those obtained by commercial microarray scanners.
منابع مشابه
Strategies for MCR image analysis of large hyperspectral data-sets
Polymer microarrays are a key enabling technology for high throughput materials discovery. In this study, multivariate image analysis, specifically multivariate curve resolution (MCR), is applied to the hyperspectral time of flight secondary ion mass spectroscopy (ToF-SIMS) data from eight individual microarray spots. Rather than analysing the data individually, the data-sets are collated and a...
متن کاملComparative Evaluation of Image Fusion Methods for Hyperspectral and Panchromatic Data Fusion in Agricultural and Urban Areas
Nowadays remote sensing plays a key role in the field of earth science studies due to some of the advantages, including data collection at a very low cost and time on a very large scale. Meanwhile, using hyperspectral data is of great importance due to the high spectral resolution. Because of some limitations, such as hyperspectral imaging technology, it suffers from a reduction in the spatial ...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003